Analysis & Implementation of the IEC 61850 Standard

Brodersen participated as a professional partner in a master thesis from The Technical University of Denmark. The thesis from 2008, was an analysis of the implementation of the IEC 61850 standard in electrical substations.


Read the entire thesis on dtu.dk.

Or download the thesis here.


Project description

IEC 61850 is the new international standard for substation automation in electric power systems.


IEC 61850 is designed to be future-proof and compared to older standards it introduces object orientation and contains a complete protocol providing full interoperability.


In this project, the standard is analysed and part of it is implemented on a Remote Terminal Unit (RTU) made available by Brodersen Controls A/S. The RTU runs Windows CE, and hence the implementation is carried out on a reduced .NET framework using C# as the programming language. The end-product will be tested in a small-scale power system against a SCADA system.

Share it with your freinds

Overview - RTU protocols and driver setup
Your RTU application may simply be an 'end point' and only need to interface with a SCADA host or other master device - or it may need to 'sing and dance'...
1- Select what you need
The RTU Configuration Tool allows selection of protocols and hardware.
2 - Create a project in WorkSuite
Then define IO points, create some logic and additional variables eg. this waste water pump station controller accumulates pump statistics and computes derived flow totals from change in wet well volume.
3 - Setup DNP3 slave for this example
Use the Fieldbus Configurator to add the DNP3 slave protocol, create a channel (how to communicate), create a 'session' (who to communicate with), then set application layer parameters (messaging rules).
4 - 'Variables of interest'
Variables (data points in the RTU database) can be 'exposed' to one or more protocols, by referencing them in either the fieldbus editor (simple protocols like Modbus), or including them in a 'profile' (advanced protocols like IEC61850 and DNP3). For DNP3 slave, the variables of interest are dragged in to the DNP3S profile, where they can be associated to object types, given a point address, event class, reporting limits etc.
5 - Prove it works
Connect the RTU to the SCADA host and prove the data values are transferred correctly. If you need to troubleshoot the message contents - use the RTU web interface utility to capture network data packets for viewing in Wireshark to quickly resolve issues.
6 - Make it smarter!
The WorkSuite logic tools allow you to interact with the RTU communications tasks, to enhance the monitoring and control of your data transfer processes. This example DNP3 slave RTU is monitoring the unread events buffers and is able to manipulate point object properties (event class, reporting thresholds etc) and network interface properties (IP address of the host and peer slaves that it may be communicating with).
Conclusion - enjoy having a 'future proof' RTU...
Your RTU requirements will evolve over time, so when you need more I/O, comm ports, protocols or RTU functionality - know it can be easily implemented in a Brodersen RTU.
Previous slide
Next slide